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The analogy is well known between the motion of a compressible gas and 

the motion of a liquid with a free surface in a gravity field, when the 

depth of the liquid layer is small in comparison with the characteristic 

dimensions of the problem Cnshallow water”, see, for instance, reference 

[ 1 I). It allows us to use the “shallow water” case to solve one-dimen- 

sional problems of transient gas motion [ 2,3 1. Thus, if we introduce the 

quantities 

where p 
f 

is the liquid density, p and p, density and pressure of some 

fictitious gas with ratio of specific heats equal to K = 2.0, then the 

equations of motion of the liquid coincide with those of the adiabatic 

flow of this fictitious gas. However, the conditions for the hydraulic 

wave (jump h) differ from those of a shock wave in a gas, a circumstance 

which intoduces special problems. 

In a similar manner [4 ] we will study selfsimilar motions in shallow 

water with hydraulic waves propagating at constant velocity D over a 

liquid of depth h1 at rest. The parameters following the hydraulic wave 

are determined by the expressions 

where a1 is the velocity of propagation of small disturbances, v2 is the 
velocity of liquid motion directly behind the hydraulic wave. 
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Fig. 1. 

The plane hydraulic wave front corresponds to a trivial flow at con- 

stant velocity behind the wave v = v2 = const. It is interesting to study 

similarity to radial flows with cylindrical hydraulic wave front, which 

could form the model for corresponding tectonic processes under the in- 

fluence of the water surface. The similarity solution will be a function 

of the dimensionless combination x = p r/to and can be determined by in- 

tegrating the following system of equations [ 2 I : 

dz 2, (1:-1)(3v-2)-2z rl 1 I1 i. z - (V - 1)” 
-=_- - .-: 

dV V (V - I)2 - 22 ’ dI_ I’ [(V- I)%-221 ’ 
K = rzk” (31 

1’ z-z: $ v (A), p=plx(i\), p= Jg P (A), z=2p 
H 

Consistent with (2) the boundary conditions behind the hydraulic wave 

can be written thus 

The relation V = f(z,) is shown in Fig. 1, where curves are also dis- 

played 

i 
x -- 1 

zz=(l-Vyz) I$---+, ) 
for gases with K = 2, 1.4 and 1.0. 

On the line V2 = f(z,) the integral curves of equation (3) start, 

examples of integral curves being shown in Fig. 1. There are four kinds 
of flow which correspond to the type under discussion 24 1. of which for 

V2 > 0 there exist two kinds of flow in which the liquid comes to rest 
in front of the approaching hydraulic wave. 
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(a) Flow with diverging or separating hydraulic wave for t > 0 

(b) Flow with converging hydraulic wave for t < 0. 

Integral curves for flow (a) anL at the 1 ine V = 1 which corresponds 

to a cylindrical piston expanding radially at constant velocity. The flow 

Cb) is 1 imited to the plane VZ by parabola ,?= (V- 1j2 (see references 

[2,4 1 ). 

Fig. 2. Fig. 3. 

Figure 2 ilIustrates flows in the physical plane for the cases under 

discussion, (1 is the hydraulic wave, 2 the piston). Figure 3 shows the 

distribution of liquid depth behind a diverging hydraulic wave, and Fig.4 

is the same but for a converging wave. 
Change in relative energy 

E” ;J i:: 
pxtgll+rgs 

expended by the piston as a function 

of D/a1 (for the flow (a)) is illus- 

trated in Fig. 5. 

Other well known transient motions, 

such as the case of a point explosion 

against backpressure [ 2 1 can also be 

dealt with by similarity methods in 

this manner. 
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Fig. 4. 

With a very powerful hydraulic wave (D/al) -+ 00 the ratio h2/h, tends 

to infinity: therefore, to flows of the type of a powerful explosion in 
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gas I2 I, in the case of “shallow water” there corresponds the outflow 

15 1 of a constant mass of liquid for h1 = 0. As in the case of gas, in 
addition to the powerful point ex- 

plosion [ 2 I there corresponds a 

similar motion which corresponds to 

a peripheral explosion [ 6 I. For the 

“shallow water” case with a cylindric- 

al front [ 6 ] the solution corresponds 

to the following distribution of depth 

h-- r? 
8gF 

for t<o (5) 

2 5 ID 20 50 MU 
bounded by cylindrical surfaces 

Fig. 5. (6) 

This type of peripheral “ring” flow extends continuously towards the 
centre as depth increases. 
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